๐Ÿ“—
smiley book
  • Smiley Books
  • AI
    • Readme
    • openai-whisper
      • ์ƒ˜ํ”Œ ์‹คํ–‰ํ•ด๋ณด๊ธฐ
      • GPU ์„œ๋ฒ„ ์ค€๋น„ํ•˜๊ธฐ
      • API๋กœ whisper๋ฅผ ์™ธ๋ถ€์— ์˜คํ”ˆํ•˜๊ธฐ
      • ํ”„๋กฌํ”„ํŠธ ์ง€์›
      • ์‹ค์‹œ๊ฐ„ message chat
      • ํ™”๋ฉด ์ด์˜๊ฒŒ ๋งŒ๋“ค๊ธฐ์™€ ๋กœ๊ทธ์ธ
      • ํŒŒ์ด์ฌ ๊ฐ€์ƒํ™˜๊ฒฝ
      • ์‹ค์‹œ๊ฐ„ voice chat
      • fine tunning(๋ฏธ์„ธ ์กฐ์ •) ์œผ๋กœ ์„ฑ๋Šฅ ์˜ฌ๋ฆฌ๊ธฐ
      • app์—์„œ api๋ฅผ ํ˜ธ์ถœํ•˜์—ฌ ์‹ค์‹œ๊ฐ„์œผ๋กœ ํ…์ŠคํŠธ๋กœ ๋ฐ”๊ฟ”๋ณด๊ธฐ
    • ollama - llm์„ ์‰ฝ๊ฒŒ ๋‚ด์ปด์—์„œ ์‹คํ–‰
      • ollama webui
      • ollama docker
    • stable diffusion
      • SDXL - text to image
      • SD-webui
    • ChatGPT
      • ๋‹ต๋ณ€์ด ๋Š๊ธธ๋•Œ
      • ์—ญํ• ์„ ์ •ํ•˜์ž
      • ๊ตฌ์ฒด์ ์ธ ์งˆ๋ฌธ
      • ๊ฒฐ๊ณผํ˜•ํƒœ๋ฅผ ์ง€์ •
      • ํ”„๋กฌํ”„ํŠธ๋ฅผ ์—ฌ๋Ÿฌ์ค„๋กœ ์‚ฌ์šฉํ•˜์ž.
      • ๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ ๊ธ€ ๋ฒˆ์—ญ๋ณธ
    • Prompt Engineering
    • Auto-GPT
    • Gemini
      • google ai studio
      • gemini-api
      • embedding guide
    • Huggingface
      • huggingface ์‚ฌ์šฉ๋ฒ•
      • huggingface nlp ๊ณต๋ถ€์ค‘
    • kaggle
      • download dataset
    • langchain
      • langchain์„ ๊ณต๋ถ€ํ•˜๋ฉฐ ์ •๋ฆฌ
      • basic
      • slackbot
      • rag
      • document-loader
      • website-loader
      • confluence
      • memory
      • function-call
      • langsmith
      • agent-toolkit
  • Ansible
    • templates vs files and jinja2
    • dynamic inventory
    • limit ์˜ต์…˜ ๊ฐ•์ œํ•˜๊ธฐ
    • limit ์‚ฌ์šฉํ›„ gather_fact ๋ฌธ์ œ
  • AWS
    • AWS CLI
    • EKS
      • cluster manage
      • ALB Controller
      • external-dns
      • fargate
    • ECR
    • S3
    • Certificate Manager
  • Azure
    • Azure AD OAuth Client Flow
  • Container
    • Registry
    • ๋นŒ๋“œ์‹œ์— env๊ฐ’ ์„ค์ •ํ•˜๊ธฐ
  • DB
    • PXC
      • Operator
      • PMM
      • ์‚ญ์ œ
      • GTID
      • Cross Site Replication
    • Mssql
    • Mysql
  • dotnet
    • Thread Pool
    • Connection Pool
    • Thread Pool2
  • Devops
    • Recommendation
  • GIT
    • Basic
    • Submodule
  • GitHub
    • Repository
    • GitHub Action
    • GitHub PR
    • Self Hosted Runner
    • GitHub Webhook
  • GitLab
    • CI/CD
    • CI/CD Advance
    • Ssl renew
    • CI/CD Pass env to other job
  • Go Lang
    • ๊ฐœ๋ฐœ ํ™˜๊ฒฝ ๊ตฌ์ถ•
    • multi os binary build
    • kubectl๊ฐ™์€ cli๋งŒ๋“ค๊ธฐ
    • azure ad cli
    • embed static file
    • go study
      • pointer
      • module and package
      • string
      • struct
      • goroutine
  • Kubernetes
    • Kubernetes๋Š” ๋ฌด์—‡์ธ๊ฐ€
    • Tools
    • Install with kubespray
    • Kubernetes hardening guidance
    • 11 ways not to get hacked
    • ArgoCD
      • Install
      • CLI
      • Repository
      • Apps
      • AWS ALB ์‚ฌ์šฉ
      • Notification slack
      • Backup / DR
      • Ingress
      • 2021-11-16 Github error
      • Server Config
      • auth0 ์ธ์ฆ ์ถ”๊ฐ€(oauth,OIDC)
    • Extension
      • Longhorn pvc
      • External dns
      • Ingress nginx
      • Cert Manager
      • Kube prometheus
    • Helm
      • Subchart
      • Tip
    • Loki
    • Persistent Volume
    • TIP
      • Job
      • Pod
      • Log
  • KAFKA
    • raft
  • KVM
    • kvm cpu model
  • Linux
    • DNS Bind9
      • Cert-Manager
      • Certbot
      • Dynamic Update
      • Log
    • Export and variable
    • Grep ์‚ฌ์šฉ๋ฒ•
  • Modeling
    • C4 model introduce
    • Mermaid
    • reference
  • Monitoring
    • Readme
    • 0. What is Monitoring
    • 1. install prometheus and grafana
    • 2. grafana provisioning
    • 3. grafana dashboard
    • 4. grafana portable dashboard
    • 5. prometheus ui
    • 6. prometheus oauth2
    • Prometheus
      • Metric type
      • basic
      • rate vs irate
      • k8s-prometheus
    • Grafana
      • Expolorer
    • Node Exporter
      • advance
      • textfile collector
  • Motivation
    • 3 Simple Rule
  • OPENNEBULA
    • Install(ansible)
    • Install
    • Tip
    • Windows vm
  • Reading
    • comfort zone
    • ๋ฐฐ๋ ค
    • elon musk 6 rule for insane productivity
    • Feynman Technique
    • how to interview - elon musk
    • ๊ฒฝ์ฒญ
    • Readme
  • Redis
    • Install
    • Master-slave Architecture
    • Sentinel
    • Redis Cluster
    • Client programming c#
  • SEO
    • Readme
  • Security
    • criminalip.io
      • criminalip.io
  • Stock
    • robinhood-python
  • Terraform
    • moved block
    • output
  • vault
    • Readme
  • VS Code
    • dev container
    • dev container on remote server
  • Old fashione trend
    • curity
    • MAAS
      • Install maas
      • Manage maas
      • Tip
Powered by GitBook
On this page

Was this helpful?

  1. AI
  2. langchain

function-call

์˜คํ•ด๊ฐ€ ๋งŽ์Œ..

openai์—์„œ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ›๋Š”๊ฒƒ์ด ์•„๋‹˜

๊ธฐ์กด ์งˆ๋ฌธ : "{country}์˜ ์ˆ˜๋„๊ฐ€ ์–ด๋””์•ผ?" ๋ผ๊ณ  ๋ฌผ์œผ๋ฉด ์„œ์šธ์ด๋ผ๋Š” ๋‹ต๋ณ€์ด ์˜ค๋Š”๋ฐ

function calling์„ ํ•˜๋ฉด "๋‚˜๋Š” ํ•œ๊ตญ์˜ ์ˆ˜๋„๊ฐ€ ์–ด๋””์ธ์ง€ ์•Œ๊ณ ์‹ถ์–ด?" ๋ผ๊ณ  ๋ฌผ์œผ๋ฉด

get_city(country) ๋ผ๋Š” ํ•จ์ˆ˜๊ฐ€ ์ž‡๋‹ค๊ณ ํ•˜๋ฉด "ํ•จ์ˆ˜ get_city๋ฅผ ์‹คํ–‰ํ•˜๊ณ  argument ๋กœ ํ•œ๊ตญ์„ ๋„ฃ์–ด๋ผ." ๋ผ๊ณ  ์•Œ๋ ค์ฃผ๋Š”๊ฒƒ. ์‹ค์ œ๋กœ ํ•จ์ˆ˜๋ฅผ ์‹คํ–‰ํ•˜๋Š”๊ฒƒ๋„ ์•„๋‹˜.

๊ทธ๋Ÿฌ๋‹ˆ ์‹ค์ œ๋กœ openai์—์„œ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ›๋Š”๊ฒƒ์ด ์•„๋‹˜

๊ฒฐ๊ณผ๋Š” get_city์—์„œ ์ฒ˜๋ฆฌํ•ด์•ผํ•จ.

from dotenv import load_dotenv
load_dotenv()
from langchain.prompts import PromptTemplate
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(
  temperature=0.1,
)
template = "{country}์˜ ์ˆ˜๋„๋Š” ๋ญ์•ผ?"


# ํ…œํ”Œ๋ฆฟ ์™„์„ฑ
prompt = PromptTemplate.from_template(template=template)
prompt
chain = prompt | llm

chain.invoke({"country":"ํ•œ๊ตญ"})

add function

def get_city(country):
    print(country)

add schema

schema = {
  "name": "get_city",
  "description": "๋‚˜๋ผ์˜ ์ˆ˜๋„๋ฅผ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค.",
  "parameters": {
    "type": "object",
    "properties": {
      "country": { "type": "string","description": "๋‚˜๋ผ ์ด๋ฆ„" }
    }
  },
  "required": ["country"],
}
llm = ChatOpenAI(
    temperature=0.1,
).bind(
  function_call={
      "name": "get_city",
  },
  functions=[
      schema,
  ],
)
template = "{country}์˜ ์ˆ˜๋„๋Š” ๋ญ์•ผ?"


# ํ…œํ”Œ๋ฆฟ ์™„์„ฑ
prompt = PromptTemplate.from_template(template=template)
prompt
chain = prompt | llm
chain.invoke({"country": "ํ•œ๊ตญ"})
AIMessage(content='', additional_kwargs={'function_call': {'arguments': '{"country":"ํ•œ๊ตญ"}', 'name': 'get_city'}}, )
response = chain.invoke({"country": "ํ•œ๊ตญ"})
arg_from_ai = response.additional_kwargs["function_call"]
arg_from_ai
arg_from_ai["arguments"]
arg_from_ai["name"]
import json

arguments = json.loads(arg_from_ai["arguments"])
country = arguments["country"]
country
if arg_from_ai["name"] == "get_city":
    get_city(country)
PreviousmemoryNextlangsmith

Last updated 11 months ago

Was this helpful?